

WEEKLY TEST TYM TEST 16 UNISION SOLUTION Date 08-12-2019

[PHYSICS]

1. . The effective acceleration of a bob in water = $g'=g\left[1-\frac{\sigma}{\rho}\right]$

where σ and ρ are the densities of water and the bob respectively. Since, the periods of oscillation of the bob in air and water are given as

$$T = 2\pi \sqrt{\frac{I}{g}}$$
 and $T' = 2\pi \sqrt{\frac{I}{g'}}$

$$\frac{T}{T'} = \sqrt{\frac{g'}{g}} = \sqrt{\frac{g\left(1 - \frac{\sigma}{\rho}\right)}{g}}$$
$$= \sqrt{1 - \frac{\sigma}{\rho}} = \sqrt{1 - \frac{1}{\rho}}$$

$$[\because \sigma = 1]$$

Putting $\frac{T}{T'} = \frac{1}{\sqrt{2}}$

We obtain,
$$\frac{1}{2} = 1 - \frac{1}{\rho} \Rightarrow \rho = 2$$

2. When the elevator is at rest, its time period is given by

$$T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{l}{10}}$$

When the elevator accelerates upwards, its time period becomes

$$T' = 2\pi \sqrt{\frac{l}{g+a}} = 2\pi \sqrt{\frac{l}{10+10}}$$
$$= 2\pi \sqrt{\frac{l}{20}}$$
$$= 2\pi \sqrt{\frac{l}{10}} \times \frac{1}{\sqrt{2}}$$
$$= \frac{T}{\sqrt{2}}$$

3. Velocity of bob
$$v = \sqrt{2gl(1-\cos\theta)}$$

$$= \sqrt{2\times9.8\times2\times(1-\cos60^\circ)}$$

$$v = \sqrt{2\times9.8} \text{ m/s}$$

6. Let displacement equation of particle executing SHM is

$$y = a \sin \omega t$$

As particle travels half of the amplitude from the equilibrium position, so

$$y = \frac{a}{2}$$

Therefore,

$$\frac{a}{2} = a \sin \omega t$$

$$\sin \omega t = \frac{1}{2} = \sin \frac{\pi}{6}$$

$$\omega t = \frac{\pi}{6}$$

or
$$t = \frac{\pi}{6\omega}$$
 or
$$t = \frac{\pi}{6\left(\frac{2\pi}{T}\right)}$$
 (as $\omega = \frac{2\pi}{T}$) 60. Given, and or

or

and

Hence, the particle travels half of the amplitude from equilibrium in $\frac{T}{12}$ s.

7.

8.

9.

10.

Time period of a simple pendulum

$$T = 2\pi \sqrt{\frac{l}{a}}$$

It is independent of the mass of the bob. Therefore time period of the pendulum will remain T.

12.

Time period of simple pendulum, 13.

$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow \frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta l}{l}$$

But at temperature θ ° C, increase in length of pendulum,

$$\frac{\Delta l}{l} = \alpha \Delta \theta$$

$$\therefore \frac{\Delta T}{T} = \frac{1}{2} \alpha \Delta \theta$$

or
$$\frac{\Delta T}{T} = \frac{1}{2} \times 9 \times 10^{-7} \times (30 - 20)$$
$$= \frac{1}{2} \times 9 \times 10^{-7} \times 10$$
$$= 4.5 \times 10^{-6}$$

$$\Delta T = 4.5 \times 10^{-6} \times 0.5$$
$$= 2.25 \times 10^{-6} \text{ s}$$

15.

(b) Acceleration of simple harmonic motion is

$$a_{\text{max}} = -\omega^2 A$$

or
$$\frac{\left(a_{\text{max}}\right)_1}{\left(a_{\text{max}}\right)_2} = \frac{\omega_1^2}{\omega_2^2}$$
 (as A remains the same)

or
$$\frac{\left(a_{\text{max}}\right)_1}{\left(a_{\text{max}}\right)_2} = \frac{\left(100\right)^2}{\left(1000\right)^2} = \left(\frac{1}{10}\right)^2 = 1:10^2$$

17. **(d)** $v = \frac{dy}{dt} = A\omega \cos \omega t = A\omega \sqrt{1 - \sin^2 \omega t}$

$$=\omega\sqrt{A^2-y^2}$$

Here, $y = \frac{a}{2}$

$$\therefore v = \omega \sqrt{a^2 - \frac{a^2}{4}} = \omega \sqrt{\frac{3a^2}{4}} = \frac{2\pi}{T} \frac{a\sqrt{3}}{2} = \frac{\pi a\sqrt{3}}{T}$$

18. (b) Acceleration ∞ – (displacement).

$$A \propto -y$$

$$A = -\omega^2 v$$

$$A = -\frac{k}{m}y$$

$$A = -ky$$

Here, y = x + a

$$\therefore$$
 acceleration = $-k(x + a)$

19. (b) Use the law of conservation of energy. Let x be the extension in the spring.

Applying conservation of energy

$$mgx - \frac{1}{2}kx^2 = 0 - 0 \implies x = \frac{2mg}{k}$$

20. (c) Displacement, $x = A \cos(\omega t)$ (given)

Velocity,
$$v = \frac{dx}{dt} = -A\omega \sin(\omega t)$$

Acceleration, $a = \frac{dv}{dt} = -A\omega^2 \cos(\omega t)$

Hence graph (c) correctly depicts the variation of a with t.

21. (c) The two displacement equations are $y_1 = a \sin(\omega t)$

and
$$y_2 = b \cos(\omega t) = b \sin\left(\omega t + \frac{\pi}{2}\right)$$

$$y_{eq} = y_1 + y_2$$

$$= a \sin \omega t + b \cos \omega t$$

$$= a \sin \omega t + b \sin \left(\omega t + \frac{\pi}{2} \right)$$

Since the frequencies for both SHMs are same, resultant motion will be SHM.

Now
$$A_{eq} = \sqrt{a^2 + b^2 + 2ab \cos \frac{\pi}{2}}$$

$$\Rightarrow A_{\rm eq} = \sqrt{a^2 + b^2}$$

22. (a) Maximum velocity $V_{\text{max}} = A\omega = \beta$ (i)

maximum acceleration $\alpha_{\text{max}} = A\omega^2 = \alpha$

(ii)

Equation (ii) divided by (i) $\omega = \frac{\omega}{\beta} \Rightarrow \frac{2\pi}{T} = \frac{\omega}{\beta}$

$$T = \frac{2\pi\beta}{\alpha}$$

23. **(a)** If initial length $l_1 = 100$ then $l_2 = 121$

By using
$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow \frac{T_1}{T_2} = \sqrt{\frac{l_1}{l_2}}$$

Hence,
$$\frac{T_1}{T_2} = \sqrt{\frac{100}{121}} \Longrightarrow T_2 = 1.1T_1$$

% increase =
$$\frac{T_2 - T_1}{T_1} \times 100 = 10\%$$

Alternative: Time period of simple pendulum

$$T = 2\pi \sqrt{\frac{l}{g}} \implies T \propto \sqrt{l}$$

$$\therefore \frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta l}{l}$$

Since,
$$\frac{\Delta l}{l} = 21\%$$

$$\therefore \frac{\Delta T}{T} = \frac{1}{2} \times 21\% \approx 10\%$$

24. (d) As springs are connected in series, effective force constant

$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} \implies k = \frac{k_1 k_2}{k_1 + k_2}$$

Hence, frequency of oscillation is

$$n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{(k_1 + k_2)m}}$$

25. **(c)**
$$n = \frac{1}{2\pi} \sqrt{\frac{K_{\text{effective}}}{m}}$$

Springs are connected in parallel

$$K_{\text{eff}} = K_1 + K_2 = K + 2K = 3K$$

$$\Rightarrow n = \frac{1}{2\pi} \sqrt{\frac{(K+2K)}{m}} = \frac{1}{2\pi} \sqrt{\frac{3K}{m}}$$

26. (a) As springs are connected in series, effective force constant

$$\frac{1}{k_{\rm eff}} = \frac{1}{k} + \frac{1}{k} = \frac{2}{k} \implies k_{\rm eff} = \frac{k}{2}$$

Hence, frequency of oscillation is

$$n = \frac{1}{2\pi} \sqrt{\frac{k_{\text{eff}}}{m}} = \frac{1}{2\pi} \sqrt{\frac{k}{2M}}$$

27. For a simple harmonic motion

$$\frac{d^2y}{dt^2} \propto -y$$

Hence, equation $y = \sin \omega t - \cos \omega t$

$$y = 5\cos\left(\frac{3\pi}{4} - 3\omega t\right)$$
 are satisfying this

condition and equation $y = 1 + \omega t + \omega^2 t^2$ is not periodic and $y = \sin^3 \omega t$ is periodic but not SHM.

- 28. The motion of planets around the sun is periodic but not simple harmonic motion.
- 29. For freely falling case the effective g is zero, so that frequency of oscillation will be zero.

$$f = \frac{1}{2\pi} \sqrt{\frac{g_{\text{eff}}}{\lambda}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{0}{\lambda}}$$

$$f = 0$$

30. $x(t) = A\cos(\omega t + \phi)$

where, ϕ is the phase constant.

$$y_1 = 5 \left[\sin 2\pi t + \sqrt{3} \cos 2\pi t \right]$$

$$= 10 \left[\frac{1}{2} \sin 2\pi t + \frac{\sqrt{3}}{2} \cos 2\pi t \right]$$

$$= 10 \left[\cos \frac{\pi}{3} \sin 2\pi t + \sin \frac{\pi}{3} \cos 2\pi t \right]$$

$$= 10 \left[\sin \left(2\pi t + \frac{\pi}{2} \right) \right] \Rightarrow A_1 = 10$$

Similarly,
$$y_2 = 5 \sin \left(2\pi t + \frac{\pi}{4}\right)$$

$$\Rightarrow$$

$$A_2 = 5$$

$$\frac{A_1}{A_2} = \frac{10}{5} = \frac{2}{1}$$

The potential energy, $U = \frac{1}{2} kx^2$

$$2U = kx^2$$

$$2U = -F_X$$

$$(\cdot \ F = -K)$$

or

or

$$\overline{F} = -x$$

$$\frac{2U}{T} + x = 0$$

$$\frac{2U}{F} + x = 0$$

Phase difference $\Delta \phi = \phi_1 - \phi_2$

$$=\frac{3\pi}{6} - \frac{\pi}{6}$$
$$=\frac{2\pi}{6} = \frac{\pi}{3}$$

34. In SHM, the acceleration is ahead of velocity by a phase angle $\frac{\pi}{2}$.

35. The total energy a particle executing SHM

$$=\frac{1}{2}m\omega^2A^2$$

The PE of the particle at a distance x from the equilibrium position

$$=\frac{1}{2}m\omega^2x^2$$

From the question, $\frac{1}{2}m\omega^2x^2 = \frac{1}{2}\left(\frac{1}{2}m\omega^2A^2\right)$

$$\Rightarrow$$

$$x^2 = \frac{A^2}{2} \Rightarrow x = \frac{A}{\sqrt{2}}$$

- 36. The average acceleration of a particle performing SHM over one complete oscillation is zero.
- 37. Let x be the point where KE = PE

Hence

$$\frac{1}{2}m\omega^{2}(a^{2}-x^{2})=\frac{1}{2}m\omega^{2}x^{2}$$

$$2x^2 = a^2$$
, $x = \frac{a}{\sqrt{2}}$

$$x = \frac{4}{\sqrt{2}} = 2\sqrt{2} \text{ cm}$$

38. By using $k \propto \frac{1}{l}$

Since, one-fourth length is cut away so remaining length is $\frac{3}{4}$ th, hence k becomes $\frac{4}{3}$ times ie, $k' = \frac{4}{3}k$.

39. Maximum velocity $v_{\text{max}} = A\omega$ $\omega = \frac{2\pi}{T}$ $v_{\text{max}} = \frac{2\pi A}{T}$ $v \propto \frac{A}{T}$ $\frac{v_1}{v_2} = \frac{A_1}{A_2} \times \frac{T_2}{T_1} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

40. For the given figure,

$$f = \frac{1}{2\pi} \sqrt{\frac{k_{eq}}{m}} \qquad \dots (i)$$
$$= \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$

If one spring is removed, then $k_{eq} = k$ and

$$f' = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \qquad \dots \text{(ii)}$$

From Eqs. (i) and (ii), we get

$$\frac{f}{f'} = \sqrt{2}$$
$$f' = \frac{1}{\sqrt{2}}f$$

41.
$$\frac{d^2x}{dt^2} + 16x = 0$$

$$\therefore \qquad \omega^2 = 16 \Rightarrow \omega = 4$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$$

42. In a complete cycle of SHM, potential energy varies for half the cycle and kinetic energy varies for the other half of the cycle. Thus, for a time period T, the potential energy varies for $\frac{T}{2}$ time.

43.

44.

45.

[CHEMISTRY]

46.

The corresponding acids are HI, HCl, HNO $_2$ and HCN. Their acid strength follows the order HI > HCl > HNO $_2$ > HCN. Hence, their conjugate base follows the reverse order.

pH of a weak acid is given by

(I)
$$2pH = \frac{1}{2}[pK_a - \log C] \text{ at } C = 0.1M$$

(ii)
$$pH = \frac{1}{2} [pK_a - \log C'] \text{ at } C' = ?$$

$$\therefore 4pH = pK_a - \log C'$$

$$2pH = pK_a = \log C$$

$$2pH = \log C - \log C' = \log \frac{0.1}{C'}$$

From I,
$$pH = \frac{1}{2}[4.74 - \log 0.1] = \frac{1}{2}[4.74 + 1.0] = 2.87$$

$$\therefore 2 \times 2.87 = \log \frac{0.1}{C'} \Rightarrow 5.74 = \log \frac{0.1}{C'}$$

$$\therefore \frac{0.1}{C'} = 5.5 \times 10^5$$

Thus, dilution
$$\frac{1}{C'} = \frac{5.55 \times 10^5}{0.1} = 5.55 \times 10^6$$
 times

48.

The conjugate acid-base pairs are (HCl, Cl $^{-}$) and (CH $_3\text{COOH}_2^+,$ CH $_3\text{COOH}).$

49.

The conjugate acids are H_2O , NH_3 , $HC \equiv CH$ and CH_3CH_3 . Their order of acid strength is $CH_3CH_3 < NH_3 < HC \equiv CH < H_2O$. Their conjugate base follows the reverse order.

50.

NH₃ donates pair of electrons while BF₃, Cu²⁺ and AlCl₃ accept lone pair of electrons.

51.

Acid
$$\xrightarrow{-H^+}$$
 Conjugate base, Base $\xrightarrow{+H^+}$ Conjugate acid

52.

H₂O⁺ (acid), H₂O (conjugate base) and not OH⁻.

53.

54.

For each weak polyprotic acid $K_{a_1} > K_{a_2} > K_{a_3}$

55.

H₂O is the weaker base, hence, its conjugate acid is the stronger acid.

$$H_2O + H^+ \rightleftharpoons H_3O^+$$

H₂O is the weakest acid, hence, its conjugate base is the strongest

56.

pH [HCl] = 2.0
∴ [H⁺] =
$$10^{-2}$$
 M
[HCl] = 10^{-2} M
Volume = 200 mL
pH [NaOH] = 12.0
pOH = 2.0
[OH⁻] = 10^{-2} M
[NaOH] = 10^{-2} M
Volume = 300 mL
 N_1V_1 (acid) = $200 \times 10^{-2} = 2$
 N_1V_2 (base) = $300 \times 10^{-2} = 3$
 $N_2V_2 > N_1V_1$
Thus, resultant mixture basic.
N(OH⁻) = $\frac{N_2V_2 - N_1V_1}{V_1 + V_2} = \frac{3-2}{500} = 2 \times 10^{-3}$ M
pOH = $-\log (2 \times 10^{-3}) = 2.7$
∴ pH = $14 - \text{pOH } 14 - 2.7 = 11.3$

[H⁺] after mixing =
$$\frac{10^{-2} \times 10 + 10^{-4} \times 990}{1000} = \frac{0.1 + 0.0990}{1000}$$

= $\frac{0.1990}{1000} = 1.99 \times 10^{-4}$
pH = (log 1.99 × 10⁻⁴)
 \therefore pH = 4 - 0.3 = 3.7

58.

$$[H^{+}] = \frac{50 \times 10^{-1} + 50 \times 10^{-2}}{100} = 5.5 \times 10^{-2} M$$

$$pH = \log (1.99 \times 10^{-4})$$

$$pH = 2 - 0.74 = 1.26$$

59.

On heating pure water the value of ionic product of water increases i.e., $K_w = 10^{-14}$ at 25°C and at 100°C, $K_w = 10^{-12}$. Thus pH and pOH both become 6 at 100°C (pH and pOH = 7 at 25°C).

60.

(a) At 25°C, [H⁺] in a solution of
$$10^{-8}$$
 M HCl > 10^{-7} M.
(b) [H⁺] = 10^{-8} M.
(c) [OH⁻] = 4×10^{-6} M \implies [H⁺] = 2.5×10^{-9} M
(d) [H⁺] = 10^{-9} M

61.

 $K_{\scriptscriptstyle W}$ changes with temperature. As temperature increases, [OH $^{\!-}$] and [H $^{\!+}$] decrease.

62.

Meq. of
$$HCl = 10 \times 10^{-1} = 1$$

Meq. of $NaOH = 10 \times 10^{-1} = 1$
Thus both are neutralised and 1 Meq. of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus $pH = 7$.

63.

The dissociation of H₃BO₃ is

$$H_3BO_3 + H_2O \rightarrow H_2BO_3^- + H_3O^+$$

$$K_1 = \frac{[\text{H}_2 \text{BO}_3^-][\text{H}_3 \text{O}^+]}{[\text{H}_3 \text{BO}_3]} = \frac{(0.18).x}{(01.0)} = 7.3 \times 10^{-10}$$

or
$$x = [H_3O^+] = 4.1 \times 10^{-10}$$

or
$$pH = -\log x = -\log (4.1 \times 10^{-10}) = 9.39$$

64.

(a) HCl NaOH

No. of milli eq. =
$$\frac{1}{10} \times 100 = 10$$
 $\frac{1}{10} \times 100 = 10$

So solution is neutral

(b)
$$\frac{1}{10} \times 55 = 5.5$$
 $\frac{1}{10} \times 45 = 4.5$

$$[H^+] = \frac{1}{100} = 10^{-2} M, pH = 2$$

(c)
$$\frac{1}{10} \times 10 = 1$$
 $\frac{1}{10} \times 90 = 9$ Basic

(d)
$$\frac{1}{5} \times 75 = 15$$
 $\frac{1}{5} \times 25 = 5$

 $[H^+] = 0.1 \text{ M}, pH = 1$

65.

Final Initial

$$pH = 12$$

$$pH = 11$$

$$[H^+] = 10^{-12} \text{ M}$$
 $[H^+] = 10^{-11} \text{ M}$ $[OH^-] = 10^{-2} \text{ M}$ $[OH^-] = 10^{-3} \text{ M}$

Initial no. of mole of
$$OH^- = 10^{-2}$$

Final no. of mole of $OH^- = 10^{-3}$

So no. of mole of OH^- removed = [0.1 - 0.001] = 0.009

66.

$$pK_w = -\log K_w = -\log 1 \times 10^{-12} = 12.$$

$$K_w = [H^+][OH^-] = 10^{-12}$$

$$[H^+] = [OH^-]$$

$$K_w = [H^+][OH^-] = 10^{-11}$$

$$[H^+] = [OH^-]$$

$$\Rightarrow$$
 $[H^+]^2 = 10^{-12}$; $[H^+] = 10^{-6}$; $pH = -\log[H^+] = -\log 10^{-6} = 6$.

 H_2O is neutral because $[H^+] = [OH^-]$ at 373 K even when pH = 6.

(d) is not correct at 373 K. Water cannot become acidic.

67.

Relative strength of weak acids =
$$\sqrt{\frac{K_{a_1}}{K_{a_2}} \times \frac{C_1}{C_2}}$$

$$\therefore \text{ Relative strength} = \sqrt{\left(\frac{K_{a_1}}{K_{a_2}}\right)} \text{ (} \because C_1 = C_2\text{)} = \sqrt{\left(\frac{2 \times 10^{-4}}{2 \times 10^{-5}}\right)}$$

Relative strength for HCOOH to $CH_3COOH = \sqrt{10}:1$

68.

$$pH = 13 \qquad .$$

$$[H^+] = 10^{-13} M$$

$$[OH^-] = 10^{-1} M = 0.1 \text{ mo! } L^{-1}$$

$$[Ba(OH)_2] = 0.1 \text{ N},$$

pH of amphiprotic salts and weak acid-weak base salt is independent of its concentration.

70.

71.

72.

Reaction: $2A + B \Longrightarrow C + D$

$$K_{P} = \frac{n_{C} \times n_{D}}{n_{A}^{2} \times n_{B}} \times \left(\frac{P}{\Sigma n}\right)^{\Delta n_{g}}$$

$$\Delta n_{g} = 2 - 3 = -1$$

$$K_{P} = \frac{n_{C} \times n_{D}}{n_{A} \times n_{B}} \times \left(\frac{\Sigma n}{P}\right)$$

$$PV = \sum nRT$$

$$\frac{V}{RT} = \frac{\sum n}{P}$$

From equations (i) and (ii),

$$K_p = \frac{n_C \times n_D}{n_A \times n_B} \times \frac{V}{RT}$$

73.

Concentration of $[NO_2]$ will decrease with increase in concentration $[N_2O_4]$.

74.

With passage of time conc. of reactants decreases and products increases.

75.

$$K = 2 = \sqrt{k_1}$$
, $K_2 = \frac{1}{K_4}$, $K_1 = \frac{1}{K_3}$

$$K_1 K_3 = 1$$
, $\sqrt{K_1}$ $K_4 = 1$ $\sqrt{K_3} = 1$

76.

$$\Delta n_g = 4 + 1 - (2 + 2) = 1$$

$$K_P = k_c (RT)^{\Delta n_g}$$

$$0.03 = K_C (0.082 \times 700)^1$$

$$K_C = 5.23 \times 10^{-4}$$

77.

Required equilibrium is obtained if we operate.

Eq. (III)
$$\times$$
 4 – Eq. (I) \times 2 – Eq. (II) \times 2

$$K_C = \frac{[N_2O_4]^2}{[N_2O]^2[O_2]^3} = \frac{(4.1 \times 10^{-9})^4}{(2.7 \times 10^{-18})^2 (4.6 \times 10^{-3})^2} = 1.832 \times 10^6$$

78.

At equilibrium rates of backward and forward reactions become equal.

87. (c) HCI is a strong electrolyte since it will produce more H^+ , comparison than that of CH_3COOH . Hence assertion is true but reason false.

- 88. (a) Barium carbonate is more soluble in HNO_3 than in water become carbonate is a weak base and reacts with the H^+ ion of HNO_3 causing the barium salt to dissociate. $BaCO_3 + HNO_3 \rightarrow Ba(NO_3)_2 + CO_2 + H_2O$
- 3 3 . 3,2 2 2
- 89. (a) The conjugate base of $CHCI_3$ is more stable than conjugate base of $CHF_3(CF_3)$. CCI_3 stabilized by -I effect of chlorine atoms as well as by the electrons. But conjugate base of $CH_3(CH_3)$ is stabilized only by -I effect of flourine atoms. Here both assertion and reason are true and reason is correct explanation of assertion.